Journal of Cells

Published by: Pak Publishing Group
Online ISSN: 2414-2476
Print ISSN: 2518-2560
Total Citation: 1

Recent Articles

Impaired Immune Phenotype of Circulating Endothelial-Derived Microparticles in None-Diabetic Patients with Chronic Heart Failure: Impact on Insulin Resistance

Pages: 20-32
Find References

Finding References


Impaired Immune Phenotype of Circulating Endothelial-Derived Microparticles in None-Diabetic Patients with Chronic Heart Failure: Impact on Insulin Resistance

Search :
Google Scholor
Search :
Microsoft Academic Search
Cite

DOI: 10.18488/journal.97/2015.1.2/97.2.20.32

Alexander E. Berezin , Alexander A. Kremzer , Tatyana A Samura , Tatyana A Berezina

Export to    BibTeX   |   EndNote   |   RIS

  1. M. M. Redfield, S. J. Jacobsen, J. J. C. Burnett, D. W. Mahoney, K. R. Bailey, and R. J. Rodeheffer, "Burden of systolic and diastolic ventricular dysfunction in the community: Appreciating the scope of the heart failure epidemic," JAMA, vol. 289, pp. 194–202, 2003.
  2. R. J. Goldberg, F. A. Spencer, C. Farmer, T. E. Meyer, and S. Pezzella, "Incidence and hospital death rates associated with heart failure: A community-wide perspective," Am. J. Med., vol. 118, pp. 728–734, 2005.
  3. V. Baliga and R. Sapsford, "Diabetes mellitus and heart failure – an overview of epidemiology and management," Diab. Vasc. Dis. Res., vol. 6, pp. 164–171, 2009.
  4. M. Bastien, P. Poirier, I. Lemieux, and J. P. Després, "Overview of epidemiology and contribution of obesity to cardiovascular disease," Prog. Cardiovasc Dis., vol. 56, pp. 369-381, 2014.
  5. M. R. MacDonald, M. C. Petrie, N. M. Hawkins, J. R. Petrie, M. Fisher, R. McKelvie, D. Aguilar, H. Krum, and J. J. V. McMurray, "Diabetes, left ventricular systolic dysfunction, and chronic heart failure," Eur. Heart J., vol. 29, pp. 1224–1240, 2008.
  6. M. Chinali, S. W. Joffe, G. P. Aurigemma, R. Makam, T. E. Meyer, and R. J. Goldberg, "Risk factors and comorbidities in a community-wide sample of patients hospitalized with acute systolic or diastolic heart failure: The worcester heart failure study," Coron Artery Dis., vol. 21, pp. 137-43, 2010.
  7. B. K. Helfand, N. J. Maselli, D. M. Lessard, J. Yarzebski, J. M. Gore, D. D. McManus, J. S. Saczynski, and R. J. Goldberg, "Elevated serum glucose levels and survival after acute heart failure: A population-based perspective," Diab. Vasc. Dis. Res. Pii: 1479164114559024. [Epub Ahead of Print], 2014.
  8. A. D. Shah, C. Langenberg, E. Rapsomaniki, S. Denaxas, M. Pujades-Rodriguez, C. P. Gale, J. Deanfield, L. Smeeth, A. Timmis, and H. Hemingway, "Type 2 diabetes and incidence of cardiovascular diseases: A cohort study in 1•9 million people," Lancet Diabetes Endocrinol. Pii, vol. S2213-8587, pp. 70219-0. Doi: 10.1016/S2213-8587(14)70219-0. [Epub Ahead of Print], 2014.
  9. E. Ingelsson, J. Sundström, J. Arnlöv, B. Zethelius, and L. Lind, "Insulin resistance and risk of congestive heart failure," JAMA, vol. 294, pp. 334-341, 2005.
  10. E. Ingelsson, J. Arnlöv, J. Sundström, B. Zethelius, B. Vessby, and L. Lind, "Novel metabolic risk factors for heart failure," J. Am. Coll. Cardiol., vol. 46, pp. 2054-2060, 2005.
  11. H. Tsutsui, S. Kinugawa, and S. Matsushima, "Oxidative stress and heart failure," Am. J. Physiol. Heart Circ. Physiol., vol. 31, pp. H2181-90, 2011.
  12. T. Oka, H. Akazawa, A. T. Naito, and I. Komuro, "Angiogenesis and cardiac hypertrophy: Maintenance of cardiac function and causative roles in heart failure," Circ. Res., vol. 114, pp. 565-571, 2014.
  13. I. Shimizu, Y. Yoshida, T. Katsuno, and T. Minamino, "Adipose tissue inflammation in diabetes and heart failure," Microbes. Infect., vol. 15, pp. 11-17, 2013.
  14. H. Tuunanen, E. Engblom, A. Naum, M. Scheinin, K. Nĺgren, J. Airaksinen, P. Nuutila, P. Iozzo, H. Ukkonen, and J. Knuuti, "Decreased myocardial free fatty acid uptake in patients with idiopathic dilated cardiomyopathy: Evidence of relationship with insulin resistance and left ventricular dysfunction," J. Card Fail, vol. 12, pp. 644-652, 2006.
  15. I. Shimizu, Y. Yoshida, T. Katsuno, K. Tateno, S. Okada, J. Moriya, M. Yokoyama, A. Nojima, T. Ito, R. Zechner, I. Komuro, Y. Kobayashi, and T. Minamino, "p53-induced adipose tissue inflammation is critically involved in the development of insulin resistance in heart failure," Cell Metab., vol. 15, pp. 51-64, 2012.
  16. J. Arnlöv, L. Lind, B. Zethelius, B. Andre?n, C. N. Hales, B. Vessby, and H. Lithell, "Several factors associated with the insulin resistance syndrome are predictors of left ventricular systolic dysfunction in a male population after 20 years of follow-up," Am. Heart J., vol. 142, pp. 720–724, 2001.
  17. A. E. Berezin, A. A. Kremzer, T. A. Samura, and Y. V. Martovitskaya, "Circulating endothelial-derived apoptotic microparticles in the patients with ischemic symptomatic chronic heart failure: Relevance of pro-inflammatory activation and outcomes," Int. Cardiovasc Res. J., vol. 8, pp. 116-23, 2014.
  18. A. E. Berezin, A. A. Kremzer, T. A. Samura, Y. V. Martovitskaya, Y. V. Malinovskiy, S. V. Oleshko, and T. A. Berezina, "Predictive value of apoptotic microparticles to mononuclear progenitor cells ratio in advanced chronic heart failure patients," J. Cardiol. Pii, vol. S0914-5087, pp. 00200-00207. doi: 10.1016/j.jjcc.2014.06.014. [Epub Ahead of Print], 2014.
  19. A. D. Shah and M. C. Kontos, "Microparticles and left ventricular assist device complications: A causal association?," J. Heart Lung Transplant, vol. 33, pp. 468-469, 2014.
  20. T. Nozaki, S. Sugiyama, K. Sugamura, K. Ohba, Y. Matsuzawa, M. Konishi, J. Matsubara, E. Akiyama, H. Sumida, K. Matsui, H. Jinnouchi, and H. Ogawa, "Prognostic value of endothelial microparticles in patients with heart failure," Eur. J. Heart Fail, vol. 12, pp. 1223-1228, 2010.
  21. N. S. Barteneva, E. Fasler-Kan, M. Bernimoulin, J. N. Stern, E. D. Ponomarev, L. Duckett, and I. A. Vorobjev, "Circulating microparticles: Square the circle," BMC. Cell Biol., vol. 14, p. 23, 2013.
  22. C. Guay and R. Regazzi, "Role of islet microRNAs in diabetes: Which model for which question?," Diabetologia, [Epub Ahead of Print], 2014.
  23. Z. H. Wu, C. L. Ji, H. Li, G. X. Qiu, C. J. Gao, and X. S. Weng, "Membrane microparticles and diseases," Eur. Rev. Med. Pharmacol Sci., vol. 17, pp. 2420-2427, 2013.
  24. C. Tetta, S. Bruno, V. Fonsato, M. C. Deregibus, and G. Camussi, "The role of microvesicles in tissue repair," Organogenesis, vol. 7, pp. 105-15, 2011.
  25. M. C. Martinez and R. Andriantsitohaina, "Microparticles in angiogenesis: Therapeutic potential," Circ. Res., vol. 109, pp. 110–119, 2011.
  26. P. E. Rautou, A. C. Vion, N. Amabile, G. Chironi, A. Simon, A. Tedgui, and C. M. Boulanger, "Microparticles, vascular function, and atherothrombosis," Circ. Res., vol. 109, pp. 593-606, 2011.
  27. N. Kurtzman, L. Zhang, B. French, R. Jonas, A. Bantly, W. T. Rogers, J. S. Moore, M. R. Rickels, and E. R. Mohler, "Personalized cytomic assessment of vascular health: Evaluation of the vascular health profile in diabetes mellitus," Cytometry B. Clin. Cytom., vol. 84, pp. 255-266, 2013.
  28. M. J. Lim and C. J. White, "Coronary angiography is the gold standard for patients with significant left ventricular dysfunction," Prog. Cardiovasc Dis., vol. 55, pp. 504-508, 2013.
  29. R. M. Lang, L. P. Badano, V. Mor-Avi, J. Afilalo, A. Armstrong, L. Ernande, F. A. Flachskampf, E. Foster, S. A. Goldstein, T. Kuznetsova, P. Lancellotti, D. Muraru, M. H. Picard, E. R. Rietzschel, L. Rudski, K. T. Spencer, W. Tsang, and J. U. Voigt, "Recommendations for cardiac chamber quantification by echocardiography in adults: An update from the  merican society of echocardiography and the European association of cardiovascular imaging," J. Am. Soc. Echocardiogr., vol. 28, pp. 1-39, 2015.
  30. D. Pellerin, R. Sharma, P. Elliott, and C. Veyrat, "Tissue doppler, strain, and strain rate echocardiography for the assessment of left and right systolic ventricular function," Heart, vol. 89, pp. iii9-17, 2003.
  31. D. R. Matthews, J. P. Hosker, A. S. Rudenski, B. A. Naylor, D. F. Treacher, and R. C. Turner, "Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man," Diabetologia, vol. 28, pp. 412–419, 1985.
  32. A. S. Levey, L. A. Stevens, C. H. Schmid, Y. L. Zhang, A. F. Castro, H. I. Feldman, J. W. Kusek, P. Eggers, F. Van Lente, T. Greene, and J. Coresh, "For the CKD-EPI (Chronic Kidney Disease Epidemiology Collaboration). A new equation to estimate glomerular filtration rate," Ann. Intern. Med., vol. 150, pp. 604-612, 2009.
  33. W. T. Friedewald, R. I. Levy, and D. S. Fredrickson, "Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge," Clin. Chem., vol. 18, pp. 499-502, 1972.
  34. A. F. Orozco and D. E. Lewis, "Flow cytometric analysis of circulating microparticles in plasma," Cytometry B. Clin. Cytom., vol. 77, pp. 502-514, 2010.
  35. R. Lacroix, C. Judicone, M. Mooberry, M. Boucekine, N. S. Key, and F. Dignat-George, "The ISTH SSC workshop. Standardization of pre-analytical variables in plasma microparticle determination: Results of the international society on thrombosis and haemostasis SSC collaborative workshop," J. Thromb Haemost. Doi: 10.1111/jth.12207 [Epub Ahead of Print], 2013.
  36. J. W. Tung, D. R. Parks, W. A. Moore, and L. A. Herzenberg, "New approaches to fluorescence compensation and visualization of FACS data," Clin. Immunol, vol. 110, pp. 277-283, 2004.
  37. D. K. McGuire and M. O. Gore, "Insulin resistance and risk for incident heart failure," JACC Heart Fail, vol. 1, pp. 537-539, 2013.
  38. W. Kosmala, C. L. Jellis, and T. H. Marwick, "Exercise limitation associated with asymptomatic left ventricular impairment: Analogy with stage B heart failure," J. Am. Coll. Cardiol. Pii, vol. S0735-1097, pp. 06991-06995. Doi: 10.1016/j.jacc.2014.10.044. [Epub Ahead of Print].
  39. N. Giuseppina, P. Marinella, V. Claudia, S. Pietro, F. Marianna, D. M. Riccardo, G. F. Paolo, V. Giustina, and N. Salvatore, "Early subclinical ventricular dysfunction in patients with insulin resistance," J. Cardiovasc. Med. (Hagerstown), vol. 15, pp. 110-114, 2014.
  40. O. Vardeny, D. K. Gupta, B. Claggett, S. Burke, A. Shah, L. Loehr, L. Rasmussen-Torvik, E. Selvin, P. P. Chang, D. Aguilar, and S. D. Solomon, "“Insulin resistance and incident heart failure: The ARIC study (Atherosclerosis Risk in Communities)," JACC Heart Fail, vol. 1, pp. 531-536, 2013.
  41. G. Gouya, P. Voithofer, S. Neuhold, A. Storka, G. Vila, R. Pacher, M. Wolzt, and M. Hülsmann, "Association of nutritional risk index with metabolic biomarkers, appetite-regulatory hormones and inflammatory biomarkers and outcome in patients with chronic heart failure," Int. J. Clin. Pract., vol. 68, pp. 1293-300, 2014.
  42. M. Doehner, Frenneaux, and S. D. Anker, "Metabolic impairment in heart failure: The myocardial and systemic perspective," J. Am. Coll. Cardiol., vol. 64, pp. 1388-1400, 2014.
  43. K. Carvajal, J. Balderas-Villalobos, M. D. Bello-Sanchez, B. Phillips-Farfán, T. Molina-Muńoz, H. Aldana-Quintero, and N. L. Gómez-Viquez, "Ca2+ mishandling and cardiac dysfunction in obesity and insulin resistance: Role of oxidative stress," Cell Calcium., vol. 56, pp. 408-415, 2014.
No any video found for this article.
(2015). Impaired Immune Phenotype of Circulating Endothelial-Derived Microparticles in None-Diabetic Patients with Chronic Heart Failure: Impact on Insulin Resistance. Journal of Cells, 1(2): 20-32. DOI: 10.18488/journal.97/2015.1.2/97.2.20.32
Background: The causality role of different immune phenotype in IR developing among chronic heart failure (CHF) subjects has not determined obviously. The aim of the study was to assess relationship between IR and immune phenotype of circulating endothelial-derived microparticles (EMPs) in patients with CHF. Methods: The study retrospectively involved 300 CHF patients aged 48 to 62 years. All the patients have given written informed consent for participation in the study. Biomarkers were measured at baseline of the study. Results: These were not significant differences between both cohort patients in EMPs labeled as CD144+/CD31+, CD144+/annexin V+, and CD62E+ microparticles. Higher concentrations of CD144+/CD31+/annexin V+ EMPs and CD31+/annexin V+ EMPs were found in IR subjects when compared with none IR patients. Using multivariate logistic regression analyses, we found that HOMA-IR (OR = 1.14, 95% CI=1.08-1.21, P = 0.001), NT-proBNP (OR = 1.07, 95% CI=1.04-1.10, P = 0.001), hs-CRP (OR = 1.04, 95% CI=1.02-1.07, P = 0.001), and NYHA class (OR = 1.03, 95% CI=1.01-1.05, P = 0.001) were predictors for increased CD31+/annexin V+ EMPs. Therefore, HOMA-IR (OR = 1.10, 95% CI=1.05-1.17, P = 0.001), NT-proBNP (OR = 1.08, 95% CI=1.04-1.12, P = 0.001), and NYHA class (OR = 1.05, 95% CI=1.02-1.09, P = 0.001) significantly predicted elevation of CD144+/CD31+/annexin V+ EMPs. Conclusion: we found that IR remains statistically significant predictor for increased apoptotic-derived EMPs labelled as CD144+/CD31+/annexin V+ and CD31+/annexin V+ EMPsin none-diabetic patients with CHF patients and that these findings reflect exiting impaired phenotype of circulating EMPs in this patient population.
Contribution/ Originality
The paper’s primary contribution is finding that insulin resistance may predict being of impaired phenotype of circulating endothelial-derived microparticles among none-diabetic patients with chronic heart failure.

Biological Functions of Plasma Membrane-Derived Extracellular Vesicles and Their Role in Diseases

Pages: 33-42
Find References

Finding References


Biological Functions of Plasma Membrane-Derived Extracellular Vesicles and Their Role in Diseases

Search :
Google Scholor
Search :
Microsoft Academic Search
Cite

DOI: 10.18488/journal.97/2015.1.2/97.2.33.42

Samuel Antwi-Baffour , Ransford Kyeremeh , Alexander Martin-Odoom , Mahmood A. Seidu

Export to    BibTeX   |   EndNote   |   RIS

  1. B. György, T. G. Szabó, M. Pásztói, Z. Pál, P. Misják, and B. Aradi, "Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles," Cell Mol. Life Sci., vol. 68, pp. 2667-2688, 2011.
  2. J. J. Jimenez, W. Jy, L. M. Mauro, C. Soderland, L. L. Horstman, and Y. Ahn, "Endothelial cells release phenotypically and quantitatively distinct microparticles in activation and apoptosis," Thromb Res., vol. 109, pp. 175-180, 2003.
  3. R. Nieuwland and A. Sturk, Platelet-derived microparticles. London: Academic Press, Elsevier Science, 2002.
  4. A.-S. Anne, "Leukocyte-derived microparticles in vascular homeostasis," Circulation Research, vol. 110, pp. 356 – 369, 2012.
  5. H. W. Jörg Distler, S. David Pisetsky, C. Lars Huber, R. Joachim Kalden, G. Steffen, and D. Oliver, "Microparticles as regulators of inflammation: Novel players of cellular crosstalk in the rheumatic diseases," Arthritis & Rheumatism, vol. 52, pp. 3337–3348, 2005.
  6. A. Julio Chirinos, A. Gustavo Heresi, V. Hermes, J. Wenche, J. Joaquin Jimenez, and A. Eugene, "Elevation of endothelial microparticles, platelets, and leukocyte activation in patients with venous thromboembolism," Journal of the American College of Cardiology, vol. 45, pp. 1467–1471, 2005.
  7. E. Hind, S. Heugh, E. A. Ansa-Addo, S. Antwi-Baffour, S. Lange, and J. N. Inal Biochem, "Red-cell derived plasma membrane-derived vesicles: Result variability and standardizatio," Biophys. Res. Commun., vol. 280, pp. 818–823, 2010.
  8. S. B. Forlow, R. P. McEver, and M. U. Nollert, "Leukocyte–leukocyte interactions mediated by platelet microparticles under flow," Blood, vol. 95, pp. 1317–1323, 2000.
  9. C.N. I. Del Conde, P. Shrimpton Thiagarajan, and J. A. Lopez, "Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation," Blood, vol. 106, pp. 1604-1611, 2005.
  10. U. Rauch, D. Bonderman, B. Bohrmann, J. J. Badimon, J. Himber, and M. A. Riederer, "Transfer of tissue factor from leukocytes to platelets is mediated by CD15 and tissue factor," Blood, vol. 96, pp. 170-175, 2000.
  11. P. Thomas, H. Sigrún, F. Philippe Devaux, and M. Gerrit Van, "Lipid distribution and transport across cellular membranes," Cell & Developmental Biology, vol. 12, pp. 139–148, 2001.
  12. B. Lentz, "Exposure of platelet membrane phosphatidylserine regulates blood coagulation," Prog. Lipid. Res., vol. 42, pp. 423-438, 2003.
  13. V. Muralidharan-Chari, J. Clancy, C. Plou, M. Romao, P. Chavrier, G. Raposo, and C. D’Souza-Schorey, "ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles," Curr. Biol., vol. 19, pp. 1875-1885, 2009a.
  14. N. Chazal and D. Gerlier, "Virus entry, assembly, budding, and membrane rafts," Microbiol. Mol. Biol. Rev., vol. 67, pp. 226-237, 2003.
  15. R. C. Taylor, S. P. Cullen, and S. J. Martin, "Apoptosis: Controlled demolition at the cellular level," Nat. Rev. Mol. Cell Biol., vol. 9, pp. 231-241, 2008.
  16. M.-C. Vandhana, W. James Clancy, S. Alanna, and D. S.-S. Crislyn, "Microvesicles: Mediators of extracellular communication during cancer progression," Journal of Cell Science, vol. 123, pp. 1603-1611, 2010.
  17. D. Corbeil, K. Roper, C. A. Fargeas, A. Joester, and W. B. Huttner, "Prominin: A story of cholesterol, plasma membrane protrusions and human pathology," Traffic, vol. 2, pp. 82-91, 2001.
  18. T. Clotilde, Z. Laurence, and A. Sebastian, "Exosomes: Composition, biogenesis and function," Nature Reviews Immunology, vol. 2, pp. 569–579, 2002.
  19. R. Graça and S. Willem, "Extracellular vesicles: Exosomes, microvesicles, and friends," JCB, vol. 200, pp. 4373-383, 2012.
  20. R. J. Berckmans, R. Nieuwland, A. N. Böing, F. P. Romijn, C. E. Hack, and A. Sturk, "Cell-derived microparticles circulate in healthy humans and support low-grade thrombin generation," J. Thromb Haemost., vol. 85, pp. 639-46, 2001.
  21. A. Phillip Owens III, M. Nigel, W. Christian, and M. Sebastian, "Microparticles in hemostasis and thrombosis," Circulation Research, vol. 108, pp. 1284 –1297, 2011.
  22. C. M. Boulanger, A. Scoazec, T. Ebrahimian, P. Henry, E. Mathieu, and A. Tedgui, "Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction," Circulation Research, vol. 104, pp. 2649-2652, 2001.
  23. D. Boettner, C. D. Huston, A. S. Linford, S. N. Buss, E. Houpt, and N. E. Sherman, "Entamoeba histolytica phagocytosis of human erythrocytes involves PATMK, a member of the transmembrane kinase family," PloS Pathog., vol. 4, p. 122-133, 2008.
  24. M. Baj-Krzyworzeka, M. Majka, D. Pratico, J. Ratajczak, G. Vilaire, and J. Kijowski, "Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells," Exp. Hematol., vol. 30, pp. 450-459, 2002.
  25. A. Janowska-Wieczorek, M. Majka, J. Kijowski, M. Baj-Krzyworzeka, R. Reca, and A. R. Turner, "Platelet-derived microparticles bind to hematopoietic stem/progenitor cells and enhance their engraftment," Blood, vol. 98, pp. 3143-3149, 2001.
  26. J. J. Italiano, A. Mairuhu, and R. Flaumenhaft, "Clinical relevance of microparticles from platelets and megakaryocytes," Curr. Opin. Hematol., vol. 17, pp. 578-584, 2010.
  27. M. O. Li, M. R. Sarkisian, W. Z. Mehal, P. Rakic, and R. A. Flavell, "Phosphatidylserine receptor is required for clearance of apoptotic cells," Science, vol. 302, pp. 1560-1563, 2003.
  28. J. Huber, A. Vales, G. Mitulovic, M. Blumer, R. Schmid, and J. L. Witztum, "Oxidized membrane vesicles and blebs from apoptotic cells contain biologically activate oxidized phospholipids that induce monocyte–endothelial interactions," Arterioscler Thromb Vasc Biol., vol. 22, pp. 101-107, 2002.
  29. A. J. Nauta, L. A. Trouw, M. R. Daha, O. Tijsma, R. Nieuwland, and W. J. Schwaeble, "Direct binding of C1q to apoptotic cells and cell blebs induces complement activation," Eur. J. Immunol., vol. 32, pp. 1726-1736, 2002.
  30. M. Diamant, R. Nieuwland, R. F. Pablo, A. Sturk, J. W. Smit, and J. Radder, "Elevated numbers of tissue-factor exposing microparticles correlate with components of the metabolic syndrome in uncomplicated type 2 diabetes," Circulation Research, vol. 106, pp. 2442-2447, 2002.
  31. S. Antwi-Baffour, S. Kholia, K. D. A. Yushau, E. Ansa-Addo, D. Stratton, S. Lange, and J. M. Inal, "Human plasma membrane-derived vesicles inhibits the phagocytosis of apoptotic cells – possible role in SLE," Biochem. Biophys. Res. Commun., vol. 398, pp. 278-283, 2010.
  32. O. Gasser and J. A. Schifferli, "Activated polymorphonuclear neutrophils immunol," Dis., vol. 22, pp. 572–574, 2004.
  33. D. Laurent and W. Zhen Yi, "All trans retinoic acid in acute promyelocytic leukemia," Oncogene, vol. 20, pp. 7140-7145, 2001.
  34. M. S. Tallman and J. K. Altman, "Curative strategies in acute promyelocytic leukemia," Hematology Am. Soc. Hematol. Educ. Program, vol. 1, pp. 391–399, 2008.
  35. I. C. N. Del Conde, P. Shrimpton Thiagarajan, and J. A. Lopez, "Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation," Blood, vol. 106, pp. 1604-1611, 2005.
  36. H. Iland and J. Seymour, "Role of arsenic trioxide in acute promyelocytic leukemia," Curr. Treat. Options Oncol., vol. 14, pp. 170-184, 2013.
  37. N. Bréchot, E. Gomez, M. Bignon, J. Khallou-Laschet, M. Dussiot, and A. Cazes, "Modulation of macrophage activation state protects tissue from necrosis during critical limb ischemia in thrombospondin-1-deficient mice," Plos One, vol. 3, p. e3950, 2008.
  38. E. Carole, D. Peter Katsikis, and E. Jérôme, "Neutrophil apoptosis during viral infections," Open Virol. J., vol. 3, pp. 52–59, 2009.
  39. A. Lucas and D. Greaves, "Atherosclerosis: Role of chemokines and macrophages," Expert. Rev. Mol. Med., vol. 3, pp. 1–18, 2001.
  40. V. Combes, N. Coltel, M. Alibert, M. Van Eck, C. Raymond, and I. Juhan-Vague, "ABCA1 gene deletion protects against cerebral malaria potential pathogenic role of microparticles in neuropathology," Am. J. Patho., vol. 166, pp. 295-302, 2005.
  41. A. Piccin, W. G. Murphy, and O. P. Smith, "Circulating microparticles: Pathophysiology and clinical implications," Blood Rev., vol. 21, pp. 157-171, 2007.
  42. M. J. Vanwijk, E. Svedas, K. Boer, R. Nieuwland, E. Vanbavel, and K. R. Kublickiene, "Isolated microparticles, but not whole plasma, from women with preeclampsia impair endothelium-dependent relaxation in isolated myometrial arteries from normal pregnant women," Am. J. Obstet. Gynecol., vol. 187, pp. 1686-1693, 2002.
No any video found for this article.
(2015). Biological Functions of Plasma Membrane-Derived Extracellular Vesicles and Their Role in Diseases. Journal of Cells, 1(2): 33-42. DOI: 10.18488/journal.97/2015.1.2/97.2.33.42
Plasma Membrane-derived Extracellular Vesicles (PMEVs) are membrane-coated vesicles of diameter 0.1 to 1.5µm, carrying various proteins inherent in their parental cells. PMEVs are released when cells undergo activation/apoptosis via blebbing and shedding and have a function in intercellular communication. Exposition of phosphatidylserine (PS) on the outer membrane leaflet that mark them as a biologically distinct entity could also explain a role for PMEVs in phagocytosis and thrombosis. The purpose of this review is to outline and discuss some of the functions of PMEVs in detail to throw more light on its biological effects as more research delve into emerging therapies targeting the microvesicle communication system. The role of PMEVs as a differentiation agent and therefore its possible use in differentiation therapy is discussed. In some experiments, the myeloid differentiating agents all trans retinoic acid (ATRA), phorbol 12-myristate 13-acetate (PMA) and histamine, which inhibit promonocyte proliferation, induced an intracellular Ca2+-mediated PMEV release from HL-60 promonocytes. These PMEVs caused HL-60 cells to enter G0/G1 cell cycle arrest and induce terminal monocyte-to-macrophage differentiation through TGF-β1 mediation.  The review also discusses the relationship between PMEVs and diseases where it is known that patients with certain inflammatory diseases show increased PMEV levels in the plasma. The review conclude on the fact that PMEVs have a lot of biological functions that are beneficial to the physiological functions in humans and therefore more work is required to elucidate their composition and the mechanisms involved in exertion of their effects.
Contribution/ Originality
This study contributes to the existing literature by addressing some aspects of extracellular vesicle release as well as their functions. The topic is of general interest and will be beneficial to potential readers who would want to clarify types of plasma extracellular vesicles, their functions or pathological effects.